AD=AO42 448 CLARKSON COLL OF TECHNOLOGY POTSOAM N Y DEPT OF ELEC==ETC F/6 17/2 e
A STUDY OF MICROPROCESSOR IMPLEMENTATION OF TIMF REFERENCE DIST=<ETC(U) i
JUN 77 J F BOGDANOWICZ:, K R KRISHNAN F30602=75=C=0082
UNCLASSIFIED RADC=TR=77=20 NL

RADC-TR-77-20
Phase Report
June 1977

ADA042448

A STUDY OF MICROPROCESSOR IMPLEMENTATION OF TIME REFERENCE DISTRIBUTION

Clarkson College of Technology

C._

0 °

Approved for public release; distribution unlimited. o

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 1344)

AD No. —
DOC FiLE copy

?

This report contains a few illustrations which are not of the highest
printing quality but because of economical consideration, it was determined
in the best interest of the government that they be used in this publication.

This report has been reviewed by the RADC Information Office (OI)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign
nations.

This report has been reviewed and is approved for publication.

acalt fehinirs
APPROVED: /. “ACal- A v

JACOB SCHERER
Project Engineer

APPROVED: (L: |

JOSEPH J. NARESKY

P \Vﬁ ST e
'4}:/_//0 /%4
FOR THE COMMANDER: =

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, cr if the addressee is no longer employed by your organization,
please notify RADC (DAP) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return this copy. Retain or destroy.

\P— £ 2o R —— Ciers cmmcxﬁonwfuaew.;
/} Julius F./Bogdanowicz, / David A. /Perreault ‘«j-’ F30602-75-C-0082 / _—

UNCLASSIFIED
SECURITJVEL;EIFIC ATION OF THIS PAGE (When Dal.ll'.'nlr'rci)L
[[7]) REPORT DOCUMENTATION PAGE BEFORE COMLE TiNG oM
/ /) |l BEPORENUMBER ¢ 2. GOVT ACCESSION :440. 3 RECIPIENT'S CATALOG NUMBER

A} RADCHTR-77-28 | — /A)
@ TITLE (and Subreete) | A3 ¥PE Qf RERORI.A RERIOD COVERED
A STUDY OF MICROPROCESSOR IMPLEMENTATION OF Phase Repowt,
TIME REFERENCE DISTRIBUTION, S s

-4 T S S ST . - A ”~ 6. PERFORMING OG. REPORT NUMBER
| L e WA

Komandur R./Krishnan "T"”_

Rangaswamy /Mukundan _ = _&. :
v ﬁiiﬁlﬂﬁ Eialﬂ'!iilaﬂ Hl’ﬂ! A ESS . PROGRAM ELEMENT, QOJECT, TASK
ol / 4 f5"ORK UnHTNuMBE RS

Clarkson College of Technology/Department of x/éj 95

Electrical and Computer Engineering) g {7 7 b P
Potsdam NY 13676 "4 R u fj /
11, CONTROLLING OF FICE NAME AND ADDRESS / ; }12. REPORI.DA%E

Rome Air Development Center (RBC) (// June ¥977 / il
Griffiss AFB NY 13441 —""[13. NUMBER OF PAGES

T4 WMONITORING AGENCY NAME Q)DORW!N.M from Controlling Office) | 15. SECURITY CLASS. (of this report)

Same -
/ /’ » UNCLASSIFIED
15a. DECLASSIFICATION/ DOWNGRADING |

SCHEDULE

N/A

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, i(dilferent from Report)
Same

18. SUPPLEMENTARY NOTES
RADC Project Engineer:
Jacob Scherer (RBC)

19. KEY WORDS (Continue on reverse side if necessary and identily by block number)
Digital Communications

Microprocessors

Time Reference

Electromagnetic Compatibility

0 ABSTRACT (Continue on reverse side If neceasary and identily by block number)

e dissemination of a Time Reference throughout a network is useful in the
operation of a switched digital communication network. The Time Reference
Distribution Method (TRD) is a hierarchical scheme of dynamically allocating
information paths for the flow of such reference information from the master
node to all the other nodes in the network. This report is a detailed study of
the feasibility of using a currently available microprocessor at each node to

implement the TRD algorithm. The characteristics of some current microporcessor
are studied. Three different implementation algorithms are developed for t

DD "% 1473 E€oimion 0F 1 OV 65 15 OBSOLETE UNCLASSTFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

“O 6 797

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ynamic allocation process. A sample design of microprocessor system for
one of the algorithms is presented. A estimate of the computing power needed
is made and implementation problems are discussed.

¢

A\\

UNCLASSIFIED

! SECURITY CLASSIFICATION OF Tu'® PAGE(When Data Entered)

> il‘ w "y L i
sl i S ”ww

PREFACF

This effort was conducted by Clarkson College of Technology
under the sponsorship of the Rome Air Development Center Post-Doctoral
Program for Defense Communications Agency (DCA). Harris Stover
of DCA was the task project engineer and provided overall technical A

direction and guidance.

The RADC Post-Doctoral Program is a cooperative venture between RADC
and some sixty-five universities eligible to participate in the program.
Syracuse University (Department of Electrical and Computer Engineering),
Purdue University (School of Electrical Engineering), Georgia Institute
of Technology (School of Electrical Engineering), and State University
of New York at Buffalo (Department of Electrical Engineering) act as
prime contractor schools with other schools participating via sub-contracts
with the prime schools. The U.S. Air Force Academy (Department of Electrical
Enginecering), Air Force Institute of Technology (Department of Electrical
Engineering), and the Naval Post Graduate School (Department of Electrical
Engineering) also participate in the program.
The Post-Doctoral Program provides an opportunity for faculty at
participating universities to spend up to one year full time on
i exploratory development and problem-solving efforts with the post-
doctorals splitting their time between the customer location and their
educational institutions. The program is totally customer-funded with

x 3 current projects being undertaken for Rome Air Development Center (RADC),

= : = —_

Space and Missile Systems Organization (SAMSO), Aeronautical Systems

Division (ASD), Electronic Systems Division (ESD), Air Force Avionics

Laboratory (AFAL), Foreign Technology Division (FTD), Air Force Weapons

lLaboratory (AFWL), Armament Development and Test Center (ADTC), Air

Force Communications Service (AFCS), Aerospace Defense Command (ADC),

Hq USAF, Defense Communications Agency (DCA), Navy, Army, Aerospace

Medical Division (AMD), and Federal Aviation Administration (FAA).
Further inforaiation about the RADC Post-Doctoral Program can be

obtained from Jacob Scherer, RADC/RBC, Griffiss AFB, NY, 13441, telephone

AV 587-2543, COMM (315) 330-2543.

ii

Chapter 1

Chapter 2

Chapter 3

Chapter 4

4.2
4.3
4.4
Chapter 5
5.1
5.2
5.3
Chapter 6
References
Appendix A

Appendix B

TABLE OF CONTENTS

Introduction

Survey of Microprocessor Characteristics
and Capabilities

The Method of Time-Reference Distribution
Implementation Algorithms

TMAB Algorithm

TMNB Algorithm

SM Algorithm

The Problem of Node Initialization

A Feasibility Design of Nodal Processor
Feasibility Design

Estimates of Processing Time

Estimates of Needed Storage

Conclusion

Programming Listings

Some Current Microprocessor Manufacturers

iii

PAGE

19

25

26

38

38

48

49

59

61

64

66

68

77

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Table 1

Table 2

Table 3

Table 4

Table 5

10

11

12

13

l4a

14b

LIST OF FIGURES AND TABLES

Comparison of memory efficiency versus operational
speed for some current microprocessors.

General flowchart for three phases of iteration process.

Memory map for the TMAB algorithm.

Channel buffer interrupt routine for TMAB algorithm.
Selection and decision routine for TMAB algorithm.
Memory map for the TMNB algorithm.

Channel buffer interrupt routine for TMNB algorithm.
Selection and decision routine for TMNB algorithm.
Memory map for the SM algorithm.

Channel buffer interrupt routine for SM algorithm.
Selection and decision routine for SM algorithm.
Initialization routines.

Block diagram of nodal processor.

Block diagram of a Peripheral Interface Adaptor (PIA).

PIA initialization program.

Performance comparison for LSI processors as a function
of the technology.

Major characteristics of some current microprocessors.

General comparison between selection criteria and their
effect on system design.

Phase completion time estimates.

Storage estimates for routines.

PAGE

27
28 1
29
32
34
35

37

56
58

58

18

53
61

62

Chapter 1

INTRODUCT ION

The dissemination of an accurate Time Reference throughout a network has
important applications in the operation of a switched digital communication
network [1-4]. The method of Time Reference Distribution, studied in [5-8],
is a hierarchical method of disseminating such a reference throughout a
network. It enables each node of the network to select the best available
reference in the network, by processing information received from its neigh-
boring nodes.

This report presents a detailed feasibility study of using a micro-
processor at each node to implement the operational procedure of Time
Reference Distribution. Three alternative algorithms of microprocessor
implementation are proposed and a sample design is given of a microprocessor
system for one of the algorithms. It should be pointed out that no actual
hardware simulations have been performed, but the design considerations have
been presented in sufficient detail to demonstrate the feasibility of the
design and to serve as a guide for hardware simulation. The study is thus an
intermediate step between theory and hardware, and, it is hoped, brings the
Time Reference method closer to implementation.

Various hardware techniques such as hard-wired logic and programmable
logic can be used to implement a nodal processor. Hard-wired logic consists
of logic gates, multivibrators, counters and other commercially available SSI
or MSI components [9]. On the other hand, programmable logic consists of a
stored program which controls the functions of a microprocessor (or CPU) in

a minicomputer or microcomputer [10].

For a particular application, hard-wired logic, microprocessors, micro-
computers or minicomputers could be used to implement the logical control
functions. The tradeoffs between these techniques are based on developmental
costs and time, ease of making system engineering changes, complexity, speed,
and reliability.

The developmental time and cost for designing and debugging hard-wired
logic in comparison to programmable logic restricts their use to high volume
applications where the engineering costs can be distributed over many units.
For programmable logic, once the logical functions of the design are defined,
it becomes a simple matter of encoding them into a sequence of instructions
and storing them in memory [11]. The use of design aids such as compilers,
assemblers, editors, and simulators allows rapid debugging of the application
programs [11,12]. System changes, whether the addition of new functions or
the modification of existing functions, are accomplished via a relatively simple
program change. With the hard-wired logic approach, minor logical changes can
cause major hardware changes which must be implemented at a high cost.

A few remarks might be useful here to explain why the study considered
the use of a microprocessor instead of a minicomputer to implement the logical
functions of the Time Reference Distribution Method. The emergence of the
microprocessor has enabled an impressive amount of data processing to be
performed on small and inexpensive chips. This means that instead of the
computing power residing in a single, large, central processor, it can be
diffused into small and inexpensive units composed of groups of chips, each
designed to match the particular needs of the application. This 'decentraliza-
tion' results in an increased reliability, since the failure of an individual

unit is likely to be less extensive in its effects than the failure of a single

2.

eads.

central processor. It also makes for easier and cheaper maintenance, since
the chips are inexpensive to replace. However, microprocessors are, at
present, a good deal slower [13] than minicomputers. One expects, however,
that the gap will get narrower and narrower. Some estimates of the processing
time are given later in the report (p.53) for the implementation of the Time
Reference scheme. It is expected that the execution of the algorithm of Time
Reference Distribution (i.e. the process of reference selection) will take
place at much longer intervals (perhaps minutes or hours) than the exchange of
timing information. Hence the speed of execution of the algorithm is not a
critical consideration, and the estimated times on p. 53 are much smaller than
will be required in network operation.

The microprocessor is still a technological infant. Hence, its full
impact on data-processing problems and the full range of its potential
applications are difficult to envisage at this stage of its development.
However, the review articles appearing in the IEEE Spectrum (January, April
1976) describe applications already found and give a glimpse of the
possibilities for the future.

The report is organized as follows. Chapter 2 contains a comparative
description of the characteristics and capabilities of several microprocessors
that are available at present. Chapter 3 is a brief explanation of the rules
of operation of the Time Reference Distribution method. Chapter 4 examines
the details of microprocessor implementation of those rules and presents
three different algorithms of microprocessor implementation. Chapter 5
discusses the actual design of nodal processor for one of the three
algorithms developed in Chapter 4. This is done in sufficient detail to show

that the microprocessor implementation is indeed feasible. Chapters 4 and 5

3.

Ty e = . B IO e 33t

comprise the main results of this study. Chapter 6 summarizes the conclusions

of the study and offers suggestions for further studies.

a program listing for the sample design of Chapter 5.

The Appendix contains

Chapter 2
SURVEY OF MICROPROCESSOR CHARACTERISTICS AND CAPABILITIES

Microprocessors and microcomputers have been given many different
definitions. Here, we shall define a microprocessor as a processing unit
which is composed of one or more large-scale integration (LSI) chips, is able
to accept data and modify it by using arithmetic and logical functions and is
able to output the data. In this definition there is no reference to how the
process is controlled, whether it is by macroinstruction programming or by
microprogramming. This aspect lies outside of the basic definition.

A microcomputer is defined as a microprocessor which is used as a
central processing unit (CPU) to which memory and I/0 devices are connected.

Microprocessors can be compared in many ways [15]. They can be charac-
terized by their speed, I/0 transfer, number of internal registers, addressing
modes, memory-accessibility, interrupt capabilities, and stack capabilities.

The speed of a microprocessor is a function of the technology, data and
address path widths, number of separate paths and overlap in fetch and execute
cycles.

Semiconductor processing technologies used include metal oxide semi-
conductor (MOS), silicon-on-sapphire (SOS), integrated injection logic (IZL),
and low-power Schottky. A performance comparison [16] is made in Table 1 for
LSI processors manufactured by these different technologies.

In Figure 1 a comparison is made of memory efficiency versus operational
speed for some presently available microprocessors, evaluating these devices
through five test programs [17]. These benchmark programs consisted of the

following routines:

*8ut

-ssa201d TeuBys auyri-Teady
‘1013

-uo0d Alowaw aweijutew 31g
*T0a3u0d ssadoad aurl-uQ
*I9TT013U0D 3Isej A1a\

*8urssadoad Teuld1s pakeyaq
*I3TTO0I3UO0D

sweijuteuw Tleus
*8urssasoad

elep 9sodand-Teaaussn
*13T7T013uU0d paads-y3TH

*juawe8rurW JUSWNIISUT
*sTox3u0d 3uryd3IMg
*8urssadoad

Teutwaal auoydsayal
*103Tuow 3Iseg

‘UOTSISAUOD p-B 3ISB]
*8urss9doad awr3l-TEa1 MOTS
T013U0d 3uoTe-pue3lg

*103enoTed paads-y3TH
*103Fuow paads-moT *sToa3l
-UO0D 12WNSUO) ‘UOTSIAA
-uod Te3r31p-o03-8oreuUy
*8uyssaooad ejep awyl-Tea1
-uou pue paads wnypsy

1013u0d
0I1dTW I103BINOTE)

suorjedy1ddy

su 06-0T

su 00T-0¢

st 1-6°0

sn 01-¢
st 0T-T

s 00T

aurl
UOTIONIISUTOIDTR

su 1-0T

su QT-S¢

su 6Z-00T

su 001 >

st I >

Ae19(q
uotrie8edoag a3en

e

A

21807 pardnoo-1333TUl
(p23juerdur-uoT)

A3330yds 19Mmod-mo]
(£4330y28
snTd pajueTdut

-uor) (9L6T) 1,I

e

(91801
JU31INd-3jUB3ISUO0D
K1ejuswaTdwod) Amo
143-a¢ pa23iueTdur-uog
(pe3uerdur
-uot-uou) TLL
A)330yds 19mod-mo]
(p23uerdur-uot) ANH
(91807 19MOTTO3F
-1933TWS pPasniJTp
-21d113) 143-0€
(91807 103sTsueil
-103sTsa1) TI¥
(UOT3IBTOST UOTSNIJTP
10329TT02) IAD
(3ueTdur-uor-uou) 1,1
aatyddes-uo-gon-2
(SL6T) SOR-U

of the technology

(¥£61) SORW-D
(¥£6T) SOW-U

Table 1 - Performance comparison for LSI processors as a function

SOW-d paepuels y[ng

A8oTouyo?d] 181

——
-

99.¢

00L 009 00S 00% 00¢€ 002 00T 0
(0¥OVK)
oq
(0692) (0089K)
SOILANOIS » o VIONOLOW g
(8-5dd) (0808) TAINI » 00
(59069) TTIMIO0Y
AALSOW i
(OVWS0D) voy °
(0¥OIR) |
(8-dKI) o g 002
(8008) TYNOILVN
TAINI
L
00€
SKS*®
00%
>

(SALAE) XYOWHW WVYO0¥d

Figure 1 - Comparison of memory efficiency versus operational speed

for some current microprocessors

AR o I

1. Movement of a block of data (less than 256 bytes) from one area
of memory to another.

2. Servicing an interrupt (housekeeping only).

3. Addition of a sequence of N decimal digits to another sequence
and storage.

4. Searching of a memory page for a character string.

5. Monitoring of 8 I/O devices for activity and adding to file for

each device input.

1/0 transfers can be divided into three classes: programmed transfer,
interrupt-program control and hardware control [18].

For programmed transfers, all instructions to receive or transmit data
are included in the program. Data is transferred in or cut when an appro-
priate instruction is executed.

The program interrupt approach requires I/0 devices to signal the
microprocessor by an interrupt when they are ready to transmit or receive
information. When a microprocessor is interrupted, it stops its normal
program, stores its state, and jumps to an interrupt service routine which
effects the appropriate transfer. As soon as an interrupt has been serviced,
the microprocessor returns to the state from which it was interrupted and
resumes its normal program execution.

- Hardware control of information transfer requires the I/0 devices to
initiate and control the data transfer to and from an external memory. The
"y software for operation is minimal but additional hardware is needed since
transfers occur without microprocessor intervention.
The number of internal registers and addressing modes present in a

microprocessor is related to the speed of operation and also to the amount

8.

i ,u»‘i,,.b?ﬁr,_.s. o i‘m::

of external memory that will be needed. These factors also give an indication
of how efficiently a microprocessor can be programmed.

Microprocessors have many different kinds of addressing modes. Examples
are pointer, direct, indirect, relative, immediate, and indexed modes.

The pointer-address mode allows a microprocessor with a short work
length to address large memory arrays. This is accomplished by keeping the
address in a special register which is preloaded by an instruction in the
program.

For any processor, an instruction consists of an opcode and an operand
code. When using the direct-address mode, the operand code contains the
direct address and the processor executes the instruction with data found in
the location specified by that address.

The indirect-addressing mode results in the operand code containing a
pointer to a location in memory in which the address of the data is located.

Using the relative-address mode, the address contained in the operand
code is modified by a base address before the data location is referenced.

For the immediate mode, the operand code is an immediate address by
which the processor executes the instruction on the operand code itself.

The indexed-addressing mode results in the address contained in the
operand code being modified by the contents of an index register. This
modified address not only allows any location in memory to be addressed, but
it also makes it easier to perform repeated operations.

Another distinction that can be made between microprocessors is whether
or not they are microprogrammable. Microprogramming is the programming of
bit patterns which reside in a special control that directly controls the

operation of each functional element in that microprocessor [19].

9.

PRI Ve @_ml,.k,,lg"""'i":"“m

The interrupt capabilities vary greatly between ditferent microprocessors.
Tnese capabilities range from no interrupts to multi-level vectored interrupts.
Although most microprocessors have single-level interrupts, the method by
which the state of the machine is saved can vary considerably.

Saving the state of an Intel 8008 microprocessor requires extensive
software and additional hardware. When an interrupt occurs, the program
counter is saved in an internal stack. If the accumulator or any other
particular register is to be saved, it must be loaded into an external memory.

Some microprocessors such as the Intel 8080, Motorola M6800 and National
PACE have alleviated this problem. Their architecture includes a push-down
stack with specific instructions for saving the processor status. The stacks
for the Intel 8080 and Motorola M6800 are implemented in external storage,
while the PACE has an on chip stack.

Microprocessors such as the Intel 8080, Mostek 5065, Motorola M6800 and
Rockwell PPS-8 can enable or disable interrupt requests with special instruc-
tions which set or reset an internal interrupt control flipflop. For
processors without this ability, the use of external gating may provide similar
control over the interrupts.

The PACE microprocessor can also enable or disable its interrupts. PACE
uses a status register which uses 6 of its 16 bits for control. One bit can
disable all of the interrupts. When an interrupt service routine is entered,
this bit automatically disables all interrupts. However, this bit can be
reset by software. Of the remaining programmable bits, one controls an
interrupt that is generated when the internal stack is full or empty. This

allows, through the use of an interrupt service routine, the stack to be ex-

tended in external memory.

10.

if several interrupts occur simultaneously and it is necessary for one
interrupt to be serviced before the other, a priority system is needed. Most
microprocessors must rely on software or external hardware or both to establish
a priority interrupt system.

Some microprocessors have priorities built in. The Mostek 5065 has two
levels of interrupt. The four interrupt inputs of the PACE microprocessor are
priority oriented, as are the eight interrupt inputs of the Toshiba TLCS-12.
Microprocessors such as Fairchild's F8 and Rockwell's PPS-8 provide interrupt
priorities since they have a daisy- structure. In this structure, all
connections to the bus are made in a serial fashion where a signal can be
modified by a device before it gets to the next device. Whenever an interrupt
occurs in a device, the signal is not allowed to propagate past that point on
the bus. Therefore, those devices closer to the microprocessor have a higher
priority.

Most microprocessors only allow a single level of interrupt. When an
interrupt occurs, there is a transfer of control to a certain memory location
which gives the address of the interrupt service routine. If there is more
than one source of possible interrupt, all sources must be polled to find
which caused the interrupt so that the appropriate service routine can be
called.

Intel's 8008 and 8080 use a vectored interrupt. When there is an
interrupt request, several input bits called the vector are checked. Depend-
ing on the bit configuration, a different address for the service routine is
specified. The vector is constructed with external hardware where up to eight
interrupt sources are encoded.

Motorola's M6800 microprocessor in conjunction with its Peripheral

11.

L Microprocessors usually have either an internal or external pushdown

Interface Adaptor (PIA) allows, via a software routing, the control registers
of each PIA to be polled on a priority basis to determine which device caused
the interrupt.

Some microprocessors, however, do allow multiple-levels of interrupt.
The Rockwell PPS-8, Toshiba TLCS-12, the Mostek 5065, and the National PACE
exhibit these capabilities. The use of multiple level interrupt allows an
immediate determination of which device has requested an interrupt.

The Toshiba TLCS-12 reserves a general register for a program-status
word which contains the current state of the microprocessor and the program
being executed. Whenever an interrupt occurs, the program-status word is
exchanged with another program status word which defines the state of the
microprocessor, so the interrupt can be serviced. Since there are eight
separate interrupt lines, eight separate external memory locations are needed
to store the exchanged status words. The highest priority interrupt uses
location 8 in memory for its exchange and the lowest priority uses location
15. Since each interrupt line has an independent priority, an interrupt is
only accepted when the mask bit located in the status word is a 1 and no higher
priority interrupt is requested. After the interrupt has been serviced, the
status word of the interrupted program is restored to the general register so

the interrupted program can be resumed.

stack. A pushdown stack is a linear list, that is, the last item added to the
list is the first item that can be removed [20]. A pushdown stack allows the
storing and later retrieving of the contents of the accumulator, flags, or any
data register. One advantage of using a pushdown stack is that multiple level

interrupts can be handled since on the occurrence of an interrupt, the status

12,

of the microprocessor can be saved and then restored after the interrupt is
serviced. Other advantages are register transfers are minimized, sorting is
aided, and subroutine nesting is made possible. When external memory is used
to implement the stack, the only limitation on the length of the stack is the
size of the memory.

Some microprocessors have a direct-memory access (DMA) capability. DMA
is the rapid transfer of data between peripheral devices and external memory
without microprocessor supervision. This is accomplished by stealing memory
cycles from the program and transferring the data to or from locations in
memory which are addressed by a special register. Since this address register
is incremented after every transfer, successive data words can be transferred
to or from memory.

To implement DMA, external hardware is needed. A register is needed for
the memory address and another register is used for the word count. Control
circuitry is also needed to initiate the memory cycle, once data is ready.

With the Intel 8080, the address register must be loaded with the memory
address and the word count register with the total number of words. When the
external hardware generates a HOLD input to the CPU, and if the CPU is in the
HALT state, the CPU enters the HOLD state. The CPU will also enter this state
if it is in the T2 or TW state and the READY signal is active. The T2 state is
that part of the instruction cycle in which the READY, HOLD, and HALT signals
are tested. The TW state is a wait state. The HOLD state allows an external
device to gain control of the address and data busses as soon as the current
machine cycle is completed. When the CPU enters the HOLD state, a hold
acknowledge (HLDA) signal indicates to the external hardware that the data and

address busses have gone to their high impedance state and a transfer can occur.

13.

Table 2 gives an overview of some of the major characteristics found in
some current microprocessors [15]. Appendix B lists the manufacturers of

some of the currently available microprocessors.

14. ‘

SdX

AV1dSId
ON
SLIg ¥

(119 %) st 8°0T
(119 8) sn 8'0T
(119 8) sn 8°0T
(119 8) 9%

ON

Hd Z/ZHX 0S¢
SAX

TATIVIVd 119 %
SOWd

%00%

TAINI

YA TEWISSYOMOIN SS0¥D

ALTY0T¥d dI¥OLOIA
JTIVIYVA

ATIVIUVA
(119 9T) su 00¢€
(119 9T) su 0ST
ATIVIYVA

¥asn

Hd T/ZHR 8

ON

dA011S 119 T
dV10d1€

000€

TAINI

(penur3uo)) z 31qel

QILSIAN
SLI9 91

(119 91) sn z°¢
(119 91) st %2
(119 91) sn %°¢
(119 91) 89

SAX

Hd Z/ZHK ¢

SAX

TATIVEVd 119 9T
SORN

009140
SINIWNYLSNI *NIO

Sdx

NIVHO
S1I9 8

(119 8) sn ¢
(119 8) sn ¢
(119 8) sr ¢
(119 8) TOT
SIX

Hd Z/ZHR T
S3AX
TATIVYVd 119 8
SOWN

8
QTIHOYIVA

SWALSAS SNIJALOLO¥d
YOIVIAWIS

STIVNONV

YOLINOW

YATEWASSY SSO¥D
YITEWASSY INZAISTY
TAVMIIOS

SFOVANAINI TvidaHdI¥3d
SLINYYAINT

HIQIM HIVd vivd
1N0d1N0/INdNI

GWIl AQY X¥OWAW Ol 9T
(924 Ol 93¥) AWIL AAV

¥ISNI ¥04 IWIL QVOT 9T
SNOILOMNISNI d0 ¥ITHN
QINAVIO0dO¥OTH
SEASVHA/*0F¥d AD0TD

dIHD TAVHS OI90T/NTV
TANLDIITHOAV
X90'TONHOAL dIHD

TAAOR

YTANIOVANNVA

15.

-

1d0 ALI¥OI¥d ‘TdAdT T
ATIVIIVA

(119 91) st Z°1
(119 9T) su 006
(119 91) st z°1
ATIVIYVA

yasn

Hd T/ZHK S

ON

A011S 119 ¥
¥v10d14

1049
OIHLI'TONOW

S3X

W/1d

do ‘I¥0d 0/1
aIY0LOIA
S119 8

(119 8) s G°¢

(119 8) sn ¢
(119 8) sn ¢°¢
(119 8) 8¢

ON

Hd T/ZHK T

SAX

TATIVEVd 11§ 8
SOWN

0808

TAINI

(penutiuo)) 7 A1qEL

SHA

W/1d

do ‘1¥04 0/1
aadoLodA
S119 8

(119 8) st oz/ze
(114 8) s §°2T/02
(119 8) s §°ZT/0C

(119 8) 8%

ON

Hd Z/ZHX 008/006
SAX

TATIVEVd 119 8
SOWd

T-8008/8008
TALNI

SHA

AVI1dSId
AII0LIOIA
SLIg %

(119 8) st 8
(119 8) sn g
(119 8) st 8
(119 8) 09
ON

Hd Z7/ZHW 1
SAX
TATIVIVd 119 %
SOWd

0%0Y

T4INI

WALSAS HNIJdAILOLO¥d
JOIVIAWIS

STOVAONVT

YOLINOR

YATIWASSY SSOUD
YATENISSY INIAISTY
TIVMIIOS

SHOVAYAINI TVYIHdI¥Ad
SIdMNAINT

HIQIM HIVd V1ivd
10d1N0/INdNT

AWIL AQV A¥OWAW Ol 93¥
(93¥ Ol 93¥) IWIL 4av

YISNI ¥0d AWIL AVOT OTY
SNOILONYISNI J0 YATWAN
QIRNYIO0YdO¥O IR

SASVHA/ "0d¥d D010

dIHD FUVHS JI907T/NTV
TANLOALTHOAV
X90TONHOAL dIHD

TAA0R

YTANIOVANNVR

16.

R e g e vt T

SEX

X

X

X

ATIVISVH

119 8

(119 8) sn 9
(119 8) st 81
(119 8) st 9
(11€¢ 8) 69
SHX

Hd T/ZHW (9°T
SHA

1471IVEvVd 119 8
SOHD

OVRSO0D

vO¥

AVIdSIAd ALL
SHXA
119 8

(119 8) st z°TT
(119 8) sn z'Y
(I1g 8) st g°TT
(119 8) 8¢
¥asn

Hd %/ZHX STL
ON

4011S 119 %
SOHd

00§ /V8=-dWI
IWES TYNOILVN

(penurljuo)) z @19el

SIX

¥0LdVAV HONOYHL

SHA
119 9T

(112 8) sn ¢
(119 8) st ¢
(119 8) st ¢
(11€ 8) ¢
SHA

Hd 7/ZHK 1
SAX

TATIVIVd 119 8
SOWN

0089K
VI0¥0LOK

ALT¥0I¥d
119 8

(119 8) st 0T
(118 8) st 01
(s11g 8) st ¢'8
(119 91/8) 16
ON

Hd €/ZHR %°T
SEX

TATIVEVd 119 8
SOWd

$90¢

A LSO

WALSAS 9NIJAIOLO¥d
YOIVIAWIS

SEIVAINVT

YOLINOW

YATAWISSY SSO¥D
¥ITIWASSY INAAISTY
FUVMIIOS

SAIVAYIINI TVIIHdT¥Ad
SLdNYYIINI

HIQIM H1Vd V1vd
10d1N0/INdNI

AWIL daQV A¥OWAW Ol 93¥
(934 01 93¥) IWIL AQV

YISNI ¥0d IWIL AVOT 93¥
SNOILIONYISNI 40 ¥AGWAN
(IWWNVIO0Ed0¥D TR
SASVHd/ " 03¥d D070

dIHO FYVHS OI901/NTV
TUNIDILIHONV
X90TONHOAL dIHD

TIA0K

YTUNIOVAONVR

17.

TIAFT ¥ “ALI¥OTVd
119 91/8

(118 8) s 7°'1
(119 8) su 00¢€
(119 8) su 006
(119 9T) 08 ¥3IAO
yasn

Hd %/ZHW €°€

ON

T4TIVeVd 119 9T/8
SOWN
T€9T/TZ9T/TT9T 4O
TVLIOIA NYALSIAM

AIIOLOFA TIAIT T
LI9 8

(119 8) s 8°'%
(119 8) s 8°%
(119 8) s 8'%
(119 %T°91°8) 7L

ON

Hd T/ZHW ST°'1
SHA

TITIVEVd 1I9 8
SOWN

wdId,, 10692
SOILANOIS

A

SHA

d9‘ALL‘AV1dSIa
NIVHD ASIVA 9TXE
114 8

(119 8) s ¢
(119 8) s ¥
(119 8) s ¢
(119 %T°91°8) 60T
SHA

Hd %/ZHM 0SZ
SHA

TATIVEVd 119 8
SOWd

8-Sdd

TTAMO0Y

*S$10559201dOIDTW JUSIIND 2WOS JO SOTISTIAIdEIRYD J0lfBK - 7 2T9ElL

SHX

>

dO“X11°XV1dSIa
ON
1149 %

(119 8) s %
(119 8) s ¢
(119 8) s %
(119 8) 0%
SHX

Hd %/ZHX 002
STX

TATIVIVd 119 %
SOWd

%=-Sdd
TTAMIO0Y

WALSXS ONIdALQLO¥d

HOLVINWIS
SAOVAINVT
JOLINOKW

YATIWASSY SS0¥D

YITIWEASSY INIAISHI

JIVMLAOS

SHOVAYIINI TVYTHdI¥Ad

SLdMIIIINT

HIAIM HIV4A viIvd
INd1N0/INdNI

JWIL aaV A¥OWdW Ol 93¥

(93¥ Ol 93¥) FWIL aav

YISNI ¥04 FWIL QVOT 9dad¥

SNOILOMYISNI 40 YITWAN

TINNVIO0YdOdI I

SISVHA/ *0d¥d D070

dIHO FIVHS JI90T/NTV

TAOLIILTHIAV

XO0TONHOEL d4TIHD
TIAOKW
YTINLOVANNYH

18.

e

-9

b

oot

-

‘ Chapter 3

THE METHOD OF TIME-REFERENCE DISTRIBUTION

There is a growing need [1-3] to disseminate a common reference for
precise time and time-interval (PTTI) throughout large networks, for example,
in such applications as navigation and digital communication. The "Transfer
Standard" technique [4] uses a fixed hierarchical structure in the network to
disseminate PTTI from the master node to the other nodes. However, fixed
structure techniques are of limited use when the network operation has to
accommodate clock failures and communication link outages. An alternmative

approach is to devise a scheme of self-organization which dynamically

allocates the network path over which PTTI information is transmitted to each
node [5,6]. This self-organization is accomplished by assigning a rank to each
nodal clock and a demerit to each communication link, and then providing a set
of rules which enable each node to decide over which link it should accept

PTTI information. Earlier versions [5,6] of these rules, though adequate for
the initial organization of the network, do not guarantee its re-organization
after a perturbation of its structure.

The method of Time Reference Distribution (TRD) is a modified version of
self-organization which has been shown to organize a network as well as re-
organize it after a disturbance [8]. It ensures
(a) the automatic selection of the highest ranking node in the network as

k the master node.
(b) the transmission of information to each node from this master node by a
path of minimum demerit.

In addition, when the network has been organized, each node knows its position

19.

with respect to the master node in the 'tree' along which information 1is
disseminated throughout the network.

NETWORK ORGANIZATION TECHNIQUE

The nodes cf the network are assigned unique ranks which reflect relative
accuracies of their clocks. The links between nodes are assigned demerits
which reflect the quality of the interconnection. The proposed technique is
iterative, and assumes that between the k'th and (k+l)st iterations, each node
transmits to all its connected neighbors: (a) its rank, (b) the rank of the
node it is using as ultimate reference, (c) the total demerit of the path to
its ultimate reference, and (d) the reading of a nodal update counter. Each
node then applies a set of Selection Rules to items (a), (b) and (c) of the
information received from its neighbors and makes a tentative choice of an
ultimate reference and a link over which to receive the reference (unless it
chooses itself as the reference). The node then applies a set of Decision
Rules to item (d) to decide whether to use the selected reference or resort to
self-reference. The Selection and Decision Rules are, together, sufficient for
the network to organize itself under all conditions.

Notation

Let the nodes be numbered 1,...,n where n is the total number of nodes in

the network. Furthermore, let r, be the rank of the clock at node i. The

i

higher the rank, the lower is the numerical value of ry. No two nodes have

the same rank.

The following variables are defined for each node i and for a given
iteration, k.

Ui(k) 4 rank of the clock which node i uses as an ultimate reference

between the k'th and (k+1)st iterations.

20.

Ii(k) A the node which node i used as its immediate reference
between the k'th and (k+l)st iterations.

dij=dji 4 the demerit assigned to the communications link between
nodes i and j when such a link exists; the larger the
numerical value, the worse the link.

Di(k) 4 the total path demerit by which node i received the
ultimate reference it uses between the k'th and (k+1)st
iterations.

Ti(k) A the update counter at node i for the period between the
k'th and (k+l)st iterations.

4 5 the set of all nodes which aredirectly linked to node i.

This set does not contain the node i1 itself.
Note: Symbols which are modified by a ° indicate a tentative value for

that variable, i.e., ﬁi(k)' ii(k) and ﬁi(k).

Selection Rules

There are three basic rules which are used to select the best tentative

reference for a node to use. These rules are applied sequentially and

determine the best tentative reference to use in the time interval between
the (k+l)st and (k+2)nd iterations on the basis of information transmitted
between the k'th and (k+l)st iterations. If a given selection rule uniquely
i determines the best tentative reference, the remaining rules are not applied.
Once the best tentative reference has been determined, a set of Decision
" Rules are used to decide whether this tentative reference or an alternate
reference 1is to be used.

Rule S1. A node i tentatively selects its reference from the link with

that neighboring node which used the highest ranking ultimate reference in

$ 21,

the previous iteration. However, if the rank of node i is equal to or greater
than the ultimate rank used by the directly connected node (immediate node),
node i tentatively references itself. If two or more immediate nodes reference
the same highest ultimate rank, rule S1 is inconclusive and rule S2 must be
applied. Stating S1 in a concise mathematical manner:

Let ﬁi(k) = min{ri, min U, (k-1)} e Jhs Sionsn
qui

a) 1if ﬁi(k) =T then ii(k) = 1i and D, (k) = 0;

2
b) otherwise, if ﬁi(k) = Uq(k—l), then let ii(k) = q and

Di(k) = Dq(ksl) + dij if q is unique.

Note: Rule S1 fails to uniquely select ii(k) if two or more of the
Uj(k-l) terms are equal to the minimum value of ﬂi(k) and

ﬂi(k) # r However, Ui(k) is uniquely determined.

Rule S2. From those immediate nodes which reference the same highest
ultimate rank, the link is tentatively chosen which passes the reference
information over a path of least demerit. However, if two or more dissemina-
tion paths have the same minimum demerit, rule S2 is inconclusive and rule S3
must be applied to those patns. Stating rule S2 in a concise mathematical
manner :

Suppose jl,...,jv are the nodes which give a minimum value for

ﬂi(k) in Rule S1.

Let: D (k)= min{d,, + D, (k-1)}
i y ij]
1<p<v p

a) If the minimum is achieved by a unique iw, then ii(k) = jO

b) Otherwise, apply Rule S3.

Note: Rule S2 fails to uniquely select i(k) if two or more paths have
‘ the same minimum demerit. However, 6i(k) is uniquely determined.
Rule S3. When rules S1 and S2 are inconclusive, the best tentative
reference path is selected as the minimum demerit path that has the highest
ranking immediate node. Stating rule S3 mathematically:

Suppose jl,...,j are nodes which attain the minimum of Rule S2.

t

Suppose that

r, = min{r, }

Jq 19p<t Jp

Then let Ii(k) = Jq.

Note: Rule S3 determines a unique jq’ since no two clocks have the

same rank.

Decision Rules

Once a tentative best reference has been selected by a node, it must
decide if it should use that reference. This decision is made using three
rules which are applied sequentially based on information supplied by the
nodal update counter of the given node and the tentative best reference. If
a given rule is satisfied, the remaining rules are not applied. Once the
nodal clock system becomes organized, each node knows its position from the
best reference since the update counter at each node specifies the number of

o links in the path to this reference.

Rule D1. If the tentative best reference for a given node i is a self-
reference, the node uses itself as a reference and reduces its update counter
by one unless its counter is already at zero in which case the counter remains

at zero. 1If rule D1 does not apply, rule D2 is applied. Mathematically:

5 23.

a) ({f Ui(k) =7r then Ui(k) =T, Ii(k) =1, Di(k) = 0, and

1’

Ti(k-l) -1 if Ti(k_1)>0
Ti(k) =
0 if Ti(k-1)=0

b) otherwise, apply Rule D2.

Rule D2. If the received update counter associated with the best
tentative reference is smaller than the update counter at the given node i,
the node i uses the best reference received and makes its update counter
equal to the received update counter from the best tentative reference
incremented by one. If rule D2 does not apply, rule D3 is applied. Hence,

a) if (k-1) < T,(k-1), then U, (k) = ﬂi(k), I, (k) = ii(k),

T~
L, (k)

D, = D;(k) and T (k) = T (k-1) + 1,

1, (k)
b) otherwise, apply Rule D3.
Rule D3. The node i uses itself as a reference and increments its
update counter by one; i.e.,

Ui(k) =r Ii(k) = i, Di(k) = 0 and Tj(k) = Ti(k—l) + 1,

1’
It has been shown [8], that these Decision Rules will cause the network

to converge to an organized structure in a finite number of iterations.

24.

—_—

S T

Chapter 4

IMPLEMENTATION ALGORITHMS

The logical approach to designing programmed or hard-wired logic systems

is similar in nature [21]. 1In either case, the first step consists of a

general functional partitioning. For hard-wired logic, this is known as a
block diagram. The counterpart for programmable logic is the flow chart. In
either case, system definition can be made to any degree of detail.

One approach to programmable logic is to subdivide the general system
into modules with well-defined inputs and outputs. This gives freedom in the
manner by which the modules are implemented as long as the input and output |
constraints are met.

This approach was taken in programming the process of dynamically
allocating a hierarchical information path in an interconnected system.

The process is based on comparisons made between iterations. The
iteration time intervai is aividea into three phases. Each phase is
initiated in the nodal processor by externally timed interrupts. It is
assumed that the nodal processor is initially in a wait loop, waiting to be
interrupted and it will return to this state upon completion of the interrupt.

The first phase (TR) constitutes the transmitting and receiving of nodal
information by a node with its directly connected nodes. The second phase,
(TE), ends the transmission and reception phase and provides a guard band of
time between the two major phases. The third phase (TD), consists of a
selection and decision process whereby the best nodal reference is determined
for use in the time interval between this iteration and the next. In the TR

phase, the nodal information from the connected nodes is inputted on au

25.

-

interrupt basis. In Figure 2, the general flow chart for each phase of the
iterative process is shown. As can be seen, the method by which nodal
information is stored from the channel buffers is not specified. Also, the
method by which the selection and decision process is implemented is not
specified. Three different algorithms have been developed, specifying different
ways in which these processes could be implemented. These are called TMAB, TMNB,
SM, and are explained below.

4.1. TMAB Algorithm

The first algorithm utilizes a storage table wherein nodal information is
stored on an attribute basis (TMAB). Storing information in this manner
entails storing all information of the same type in the same block. The
memory map of the storage allocation is shown in Figure 3. The first location
of each block contains the self-reference information of the node.

When an interrupt is received from a channel buffer to input nodal
information, Figure 4, a flag is set in memory to indicate that information
was received from that particular channel buffer. Information is stored in
the proper blocks by using the channel buffer number as a link. Each time a
channel buffer interrupt is received, all buffers are checked to determine if
any other channels are also ready to input data. Hence, the time needed to
initiate the interrupt service routine is minimized. For all algorithms, the
path demerit is updated before being stored.

Once all nodal information is received and loaded into the storage table,
the best tentative reference is selected. Then a decision is made to deter-
mine if this tentative reference should be used.

The TMAB selection and decision algorithm operates by checking only those

storage locations for which a flag is set. The flag for the self-reference

26.

§
|
i

TR interrupt

v

Disable TR

A

Load current
ultimate rank,
path demerit,
rank of node, and
update counter
into output chan-
nel buffers

v

Enable channel
and TE interrupts

&

Wait for chan-
nel interrupts

TR PHASE

TE interrupt

v

Disable channel
buffer and TE

interrupts
[Enable D |
I Wait]
TE PHASE

Figure 2 - General flowchart for the three phases of iteration process

27.

Channel buffer
interrupt

v

Store ultimate
rank; update and
store path demerit;
store rank of node;
store update

counter

Return to trans-—
mit service routine

TD interrupt

J,

Disable TD

v

Selection and
decision process

3

Enable TR
interrupt

[VWait JL* 4J

TD PHASE

NODAL
INFORMATION TABLE

TABLE FLAGS
ULTIMATE
RANKS
TRAN1
(ULTIMATE RANK)
TOTAL
EQ;ERITS CURRENT TRAN2
NODAL (PATH DEMERIT)
INFO.
BEING TRAN3
USED (RANK OF NODE)
TRAN4
(UPDATE COUNTER)
RANK OF
- EACH NODE
INFORMATION
CAME FROM
-
UPDATE
COUNTERS
LINK DEMERITS
Figure 3 - Memory map for the TMAB algorithm
28.
:

A S e L I A I T
. = ad - 2 s 2.

B PR T

Start of channel
interrupt routine

Sl

Have all buffers NO

il s

Check next chan-
nel buffer

y

been checked ?

IYES

Return to trans-
mit service routine

Figure 4 - Channel buffer interrupt routine for TMAB algorithin

uw-»-g'-'t .

Is buffer flag
set ?

ES

Channel links
attributes to
corresponding block
in memory

!

Input ultimate

rank from channel
buffer and store
in ultimate rank

block
v

Input path demerit
from channel buffer,
add appropriate

link demerit and
store in total
demerit block

Input rank of
node from channel
buffer and store
in the nodal rank
block

Input update

counter from channel
buffer and store

in the update
counter block

Clear buffer
flag

Set appropriate
table flag

P

L

29.

information is set before the selection and decision process is started.
Thus, if no information is received from any of the directly connected nodes,
the selection and decision process will cause the node to self-reference.
This algorithm works on the following sequence as shown in Figure 5. The
rank of the node is initially loaded into a register. This information is
compared to the ultimate rank of the next node which has a flag set. If this
ultimate rank is better, all the previous flags are cleared and this ultimate
rank is loaded into the register. If the ultimate rank is worse, then the flag
for that node is cleared. However, if the ultimate rank is equal, the flags
remain set. This process continues until the storage configuration number is
the number of directly connected nodes plus one. With this occurrence, the
register is stored in TRAN1. At this point, the sequence is repeated except
the total path demerit is used. When the storage configuration number is
reached again, the register is stored in TRAN2 and the sequence is repeated
for the final time using the rank of the nodes as a basis of comparison.
Since each node has a unique rank, only one flag will remain set. The
corresponding information is the best tentative reference. The decision to
determine if this tentative reference is to be used is generated by the
following sequence. If the best tentative reference is a self-reference,

the node uses it and decrements its update counter by one except if it is
already zero. 1If it is not a self-reference, then the tentative update
counter is compared with the current update counter (TRAN4). If it is less,
the tentative update counter is incremented and stored in TRAN4. Otherwise,
the node will self-reference itself and increment TRAN4. In all cases, the
rank of this node is stored in TRAN3. TRAN1l, TRAN2, TRAN3, and TRAN4

constitute the current information that will be transmitted to all connected

30.

(penut3juo)) ¢ a2an8yyg

(X) 8er13 1333nq 1B9T)H O

i

ENVYL
O03uT 8pou STyl 3O (ND = 1 saoq o1 (ND = I s?0Qq woag
juel syl peoT]
i
[oNWVdLl 3uswsioug |
| Y
CNVIL
03uf ¢ pEol [& o3ur 1 peot
T i |
TNVAL Id Je=xan1 31 =
03uT 2pou STYl jO YNV O3UT peoy i
M:mu_m:m peotl pue wH Juswa1ou] @ |Z=XAaNI 31 INVEL [C=XANI 31
ON =
— T ww mMA . HD T=XQNI 31 INVYL| | T=XANI 31
YNVIL - ON] - sax 19387891 Mo
JUaWa 123 N 193889 peoT|
mmw~ ;19S 3eT3J uolleZI o3jur peo] ;o
-Teragur S1[- S3A XANI 2Iuswa1duy
SR¢ O<YNVAL SI 1 r prT—— | el L
N 123s1322 o3jur T 97qe3 SI
X ="
L PeOT [1 o3ur o peor]) 3
|
{0 =X SI s = |
SdX _ SRR L v xmmH m_ ,
| Xan1 o3uy 1 peo1|
|
ss9201d UOTISTO3P
3o 1aeas

»

aurinox
UOTIBZTTBIITUT
03 uianiay

A

Wwy3iTi03TE gYWL 103 2UTINOI UOTSTISDP PUB UOTIDATAS - G 9In3Tg

doOo] 3Jtem o3
uanjaa ‘ssadoad

UOTSTO3p JO pujg

ON /N

SdA

(39S 3eTJ UOIIEZT
-TBTITUT ST

0 ©3 (1)3er13 388

Jﬂum
[z o3ur 1 peot]
|

A1 |€=XANI 31

I

HQ ¢=XANI 31I

Il fr=xan1 31

*8921 ojur peor
‘019z 03 s8e13
snotaaad 1339

) |
1| e=xaN1 31

- |

d| [7=XANI 3I

[

(0)3e13
1233nq 39§
T

) 8

\\
~

(<)

Of |T=XANI JI

13381821
y3iim aaedwo)
sax |

. 39S (1)3e13

(X)3e13
19313INnq 1e31)

1 juswaiduj

4,

L

ON

| ¢ ND=1s?

a1qe3 sI

ON |

"

1

T
- SdX

32.

nodes during the next iteration.

4.2. TMNB Algorithm

The second algorithm utilizes a storage table in which nodal information
is stored on a node basis (TMNB). In the storage table, each connected node
is allocated a storage block for storing its nodal information. The self-
reference of this node is stored in block 0. During initialization, this
information is stored in the tentative reference storage. The memory map of
the storage allocation is shown in Figure 6.

The TMNB channel buffer interrupt routine, Figure 7, is similar to that
used by the TMAB algorithm. The major difference is the form in which the
nodal information is stored.

The TMNB selection and decision process, Figure 8, operates on the
principle of comparing the information stored in the table with that stored
in the tentative reference. This comparison is accomplished by comparing
bytes until a unique decision is made determining whether the information
stored in the tentative reference is better than the information received
from the connected node. TIf the received information is better, it is
stored in the tentative reference. A comparison is made with only those
node blocks for which a flag is set. This comparison sequence is repeated
until the storage configuration number is reached. Then, a decision is made
to determine if the best tentative reference should be used. The implemented
decision sequence is very similar to that used by the TMAB algorithm. The
major difference is that the tentative and current nodal information is kept
in separate blocks during the selection and decision process. The TMAB
algorithm uses one block to store the tentative ultimate rank, tentative

path demerit, rank of this node and current update counter. A flag indicates

33.

NODAL
INFORMATION TABLE

ULTIMATE RANK

TOTAL DEMERIT

RANK OF NODE

UPDATE COUNTER

T
|

ULTIMATE RANK

TOTAL DEMERIT

RANK OF NODE

UPDATE COUNTER

L e T T

—

BLOCK 0
(SELF-REF. INFO.)

A CURRENT

NODAL
INFO.
BEING
USED

TENTATIVE
REFERENCE
STORAGE

BLOCK N

TABLE FLAGS

ULTIMATE RANK

PATH DEMERIT

RANK OF THIS
NODE

UPDATE COUNTER

TENT. ULT. RANK

TENTATIVE PATH
DEMERIT

RANK OF TENT.
REFERENCE

UPDATE COUNTER

LINK DEMERITS

Figure 6 - Memory map for the TMNB algorithm

-

34.

Start of channel
interrupt routine

NO

Have all buffers NO

Check next
channel buffer

o
&fen checked ?
YES

Return to trans-
mit service routine

Is buffer flag
set ?

Channel points
to corresponding
block in memory

Input ultimate
rank form channel
and store in
memory block

|

Input path
demerit form chan-
nel buffer, add
appropriate link
demerit and store
in memory block

Input rank of
node form channel
buffer and store
in memory block

Input update
counter form
channel buffer
and store in
memory block

Clear buffer
flag

Set appropriate
table flag

1

Figure 7 - Channel buffer interrupt routine for TMNB algorithm

35.

. A“W ._'v‘,‘..:..AiA...“ it

(penutiuo)) @ 2an31g

133sT1391 aiedwo) o]

4

*821 o3jur apou
Jo >Muel peoT]
)
A90T1q
3xau 103 aajutrod
anmu BETS
{ 1 Judwaidul |
*J91 aAT3ielua] Vgﬂ
03uT °0Tq STyl 0 o3
3o uorleWIOIUT (1)3e13 133§
guturewax peo] ﬂAvaﬂ
98e103S 9ATIEB]IUI]
03 133s1891a
(>) 2aedwo) 0) Lﬁl Z
% sa9jutod a1qel 4
21qe3 woajg pue 20uUl133al
13311821 peo] *3Jua] JusawaIdujl
SdX J
7 395 (1)%e17 |
°Tqel sI ON e
oNT 1 3juswaidul
< 4 . ND-1 s2oq | ; i

SdA 7
93e103S

aATIBIUD] JO
3ie3s 03 iajutod
Ssa.:ppe 193

i

1S

T-1 pue J90Tq
3sat3 103 z123utod
2149e3 39§
ss3001d uOTSTO9p
jo 3ae3g

WYy3ITI08T® GNWL 10J SUTINOI UOTSTOAp pue uor3ivoaras - g 2and1g

I33unod
23epdn juaiand
Julawai1dug

0 Y3ITm 3TaIswap
Jual1ind peo]

L ()

3pOu 3O uel yirm
juel ajewriln
ju21and peo]

N

i |

(<)

A33unod

dooT 31EM 03
uiniax ‘ssagsoad
UOTSIOJap Jo pug

oN T

9UT3noa
UOTIBZITEIITUT
03 uaInlay

T

{ 39s 3elJ uorjezT
~TEFIFuL ST

|

SHA

(1)3e13 1ea7)
(@a13R3UAT)
}20Tq 331 o3jur
3}90Tq uorjeWIOIUT

juaaxand peo]
) A

d133unod 3jepdn
Ju21Ind uT 21038
‘ *891 juswaidaqg

133unod ajepdn
jusaand 3yl ut

Vel 821 2y3 a103g

)

23epdn juaiand

5

133unod ajepdn
jua1and ul 2103S

oy *831 aieduwo) ‘193unod ajepdn

| . ‘jua3 Juswaiduj
?3e103s |

*J21 3AT3ejUld] JTI3Wadp Juaaand

3 ur pa3iedo] ojuTr 3JTaawap

uwucsmuawumvas 9ATIEBIU] pEROT]

Yyimm _mwu peo SRR —

o3uTr *Jj31 apou

s ‘3TN *jua’] peo

8eT3 uor3EZT It 3 peoT|

-TeT3IYuT s1| sdA 2

ERIEFEFEF]

—

9pou 23BWIITN

e A

0 UITA

37.

193571891 aiedwo)

(0)

]

133ST331 Oo3jur
‘321 *3u’d] ur
P23B20T I23UnOd
23epdn peo

0 Y3ITM 3JTI={WIP
JUa1Ind peOT]

|

90Ua13331 °pou
*3TN jua1and o3jur
133s1821 peOT]

]

)

9ATIRIUD] 03

*39a1 oaaeduo)

(0)

(<)

the location of the tentative update counter.

Once a final determination has been made as to which nodal reference
will be used, the new current reference is loaded into the tentative reference
block for use during the next iteration.

4.3. SM Algorithm

The third implementation algorithm that was developed is the Stack Method
(SM). This algorithm utilizes two external stacks. One stack is used to
store the received nodal information. The other is used to save the pro-
cessor's status while servicing interrupts.

During system initialization, the self-reference information of the node
ie stored in the tentative reference storage. The memory map of the storage
allocation is shown in Figure 9.

As in the other algorithms, the SM channel buffer interrupt routine,
Figure 10, uses the same technique to minimize the overhead involved in
servicing an interrupt. When data is inputted, the channel buffer number is
pushed onto the stack first so that it is possible to update the path demerit
before storing it. The remaining nodal information is pushed onto the stack
in reverse order since the stack organization is Last-In-First-Out (LIFO).

The SM selection and decision algorithm, Figure 11, follows the same
procedure as the TMNB algorithm except that a pushdown stack is used instead
of a table to store the nodal information. In both implementations, we are
able to compare information on a byte basis without any difference in the
comparison algorithm. The SM algorithm has the advantage of fewer flag and
address manipulations.

4.4. The Problem of Node Initialization

During normal operation of the network, there is an exchange of two

38.

PUSHDOWN STACK
FOR NODAL
INFORMATION

ULTIMATE RANK

TOTAL DEMERIT

RANK OF NODE

UPDATE COUNTER

LINK #

|

A

ULTIMATE RANK

TOTAL DEMERIT

RANK OF NODE

UPDATE COUNTER

LINK #

STACK
GROWS

IN

THIS
DIRECTION

TENTATIVE
REFERENCE
STORAGE

CURRENT
NODAL
INFO.
BEING
USED

39'

SELF-REFERENCE
INFORMATION

TENT. ULT. RANK

TENTATIVE PATH
DEMERIT

RANK OF TENT.
REFERENCE

UPDATE COUNTER

LINK #

ULTIMATE RANK

PATH DEMERIT

RANK OF THIS
NODE

UPDATE COUNTER

LINK DEMERITS

Figure 9 - Memory map for the SM algorithm,

Start of channel
interrupt routine

¥4

rd

Check next chan-

nel buffer
NO Have all buffers| NO Is buffer flag
been checked ? set ?
YES
Return to trans- Push channel #
mit service routine onto stack

Input update
counter information
and push onto the
stack

Input rank of
neighbor node and
push onto sta<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>